Кинетическая энергия. Кинетическая энергия и ее изменение — Гипермаркет знаний Внутренняя энергия газа

>>Физика 10 класс >>Физика: Кинетическая энергия и ее изменение

Кинетическая энергия

Кинетическая энергия - это энергия тела, которую оно имеет вследствие своего движения.

Если говорить простым языком, то под понятием кинетической энергии следует подразумевать только ту энергию, которую имеет тело при движении. Если же тело пребывает в состоянии покоя, то есть, совершенно не движется, тогда кинетическая энергия будет равняться нулю.

Кинетическая энергия равняется той работе, которую она должна затратить, чтобы вывести тело из состояния покоя в состояние движения с какой-то скоростью.

Следовательно, кинетическая энергия является разностью между полной энергией системы и её энергией покоя. Иначе говоря, что кинетическая энергия будет частью полной энергии, которая обусловленная движением.

Давайте попробуем разобраться в понятии кинетической энергии тела. Для примера возьмем движение шайбы по льду и попробуем понять связь между величиной кинетической энергии и работой, которая должна быть выполнена, чтобы вывести шайбу из состояния покоя и привести ее в движение, имеющее некоторую скорость.

Пример

Играющий на льду хоккеист, ударив клюшкой по шайбе сообщает ей скорость, а так и кинетическую энергию. Сразу после удара клюшкой, шайба начинает очень быстрое движение, но постепенно ее скорость замедляется и наконец, она совсем останавливается. Это значит, что уменьшение скорости явилось результатом силы трения, происходящей между поверхностью и шайбой. Тогда сила трения будет направлена против движения и действия этой силы сопровождаются перемещением. Тело же использует имеющую механическую энергию, выполняя работу против силы трения.

Из этого примера мы видим, что кинетическая энергия будет той энергией, которую тело получает в результате своего движения.

Следовательно, кинетическая энергия тела, имеющая определенную массу, будет двигаться со скоростью равной той работе, которую должна выполнить сила, приложенная к покоящемуся телу, чтобы сообщить ему данную скорость:

Кинетическая энергия является энергией движущегося тела, которая равняется произведению массы тела на квадрат его скорости, деленной пополам.


Свойства кинетической энергии

К свойствам кинетической энергии относятся: аддитивность, инвариантность по отношению к повороту системы отсчета и сохранение.

Такое свойство, как аддитивность являет собой кинетическую энергию механической системы, которая слагается из материальных точек и будет равна сумме кинетических энергий всех материальных точек, которые входят в эту систему.

Свойство инвариантности по отношению к повороту системы отсчета обозначает, что кинетическая энергия не зависит от положения точки и направления её скорости. Ее зависимость распространяется лишь от модуля или от квадрата её скорости.

Свойство сохранения обозначает, что кинетическая энергия при взаимодействиях, изменяющих лишь механические характеристики системы, совершенно не изменяется.

Это свойство неизменно по отношению к преобразованиям Галилея. Свойства сохранения кинетической энергии и второго закона Ньютона будет вполне достаточно, для выведения математической формулы кинетической энергии.

Соотношение кинетической и внутренней энергии

Но существует такая интересная дилемма, как то, что кинетическая энергия может быть зависимой от того, с каких позиций рассматривать эту систему. Если, например, мы берем объект, который можно рассмотреть только под микроскопом, то, как единое целое, это тело неподвижно, хотя существует и внутренняя энергия. При таких условиях кинетическая энергия появляется только тогда, когда это тело движется, как единое целое.

То же тело, если рассматривать на микроскопическом уровне, обладает внутренней энергией, обусловленной движением атомов и молекул, из которых оно состоит. А абсолютная температура такого тела будет пропорциональна средней кинетической энергии такого движения атомов и молекул.

при чём тут "условия преобразования одного вида энергии в другой" и "сохранение законов по времени"?

Есть такая теорема Нетер. Это - в математике, даже не в физике, строго говоря. Она говорит, что если некая система уравнений имеет какую-либо симметрию, то будет существовать и нечто, не меняющееся при преобразованиях в рамках этой симметрии.

Ну а раз что-то не меняется, то оно - "сохраняется". Все физические "законы сохранения" чего-либо являются следствием той или иной симметрии физических уравнений.

Закон сохранения энергии - лишь один из множества физических законов сохранения, некоторые из которых вы тоже знаете (например, закон сохранения импульса, закон сохранения момента импульса, закон сохранения электрического заряда). И каждый из физических законов сохранения отражает одну из симметрий физических уравнений.

Например, параллельный перенос в пространстве не меняет физических законов и вид физических уравнений, отражающих эти законы. Следствием этого факта является сохранение импульса любой замкнутой системы. А если бы физические законы и описывающие их уравнения изменялись бы при таком переносе, у нас не сохранялся бы суммарный импульс.

Аналогично обстоит дело и с переносом во времени. Раз и пока физические законы не меняются с течением времени, то не меняется и полная энергия замкнутой системы. Соответственно, отдельным "видам энергии" факт неизменности физических законов "разрешает" меняться только так, чтобы полная (суммарная) энергия замкнутой систем сохранялась. Соответственно, увеличению какого-то одного вида энергии волей-неволей ВСЕГДА сопутствует уменьшение какого-то другого, чтобы сумма не менялась. А если полная энергия замкнутой системы начнет меняться со временем, значит начали меняться физические законы. Пока такого явления не зарегистрировано, но кто знает, что было, например, в момент возникновения нашей Вселенной? Или что произойдет в течении миллиардов лет.

Таким образом, ГЛОБАЛЬНО сохранение энергии - это синоним (следствие, эквивалент) постоянства физических законов во времени. Условие сохранения является универсальной первопричиной переходов одних "видов энергии" в другие. Раз сумма не меняется, то слагаемые могут меняться только за счет друг друга. Ну а более конкретные физические механизмы реализации в разных случаях будут разные.

С сохранением импульса и другими законами сохранения - ровно та же история.

Понятно, что в преобразовании энергии непосредственно участвуют электроны и их составляющие, но что именно при этом происходит?

Атом или группа взаимодействующих атомов имеют определенные уровни энергий, соответствующие их стабильному состоянию. Вернее, эти уровни соответствуют не столько состоянию атома или атомов в целом, сколько состоянию его/их электронов.

Откуда берутся эти уровни энергии и соответствующие им состояния? Состояния являются стационарными решениями уравнений квантовой механики, а уровень энергии - это характерное число (или, если угодно, параметр системы), при котором можно найти стационарное решение. Любую другую энергию атом или система атомов может иметь лишь очень недолго (состояние не стационарно) и непременно перейдет в одно из стационарных состояний.

Теперь рассмотрим ситуацию, когда 1)два атома были далеко друг от друга и 2) оказались очень близко. Во втором случае электрические поля заряженных ядер перекроются. У электронов в таком совместном поле будут другие стационарные состояния, чем в ситуации двух далеких друг от друга атомов. А у других состояний - другие (свои) энергии.

Теперь сравниваем самые низкие значения стационарных уровней энергии в первом и втором случаях. Если во втором энергия ниже, то атомам "выгодно" объединиться в молекулу, а избыток энергии излучить (дальше излученный фотон так и полетит куда-то далеко, или, наоборот, много раз провзаимодействует переизлучаясь с другими атомами и его энергия перейдет в кинетическую энергию хаотичного движениы атомов, то есть - в тепло). Вот вам образование двухатомной молекулы с выделением энергии в ходе химической реакции.

В противоположном случае минимальная внутренняя энергия молекулы выше, чем сумма минимальных энергий двух атомов. Могут такие атомы образовать молекулу? Да, если сначала получат откуда-то разницу в энергиях. Например, один атом мог иметь не наименьшую энергию из возможных, а более высокую. Почему? Ну, поглотил фотон, но не успел испустить его обратно. Или столкнулся с другим атомом и возбудился за счет энергии столкновения (кинетическая энергия теплового лвидения перешла во внутреннюю энергию атома и еще не излучена). А раз энергия одного из атомов не минимальна, то модет оказаться "выгодно" создать молекулу и "свалиться" на ее минимальную энергию. Вот вам пример химической реакции с поглощением энергии: что-то возбуждает атом, потратив свою энергию, и только из-за этого атом смог вступить в реакцию с соседом. А поглощенная до реакции энергия так и осталась внутри молекулы. Эта внутренняя энергия высвободится только после разрушения молекулы.

И только лишь электроны участвуют в этом?

Электроны и электрические поля ядер, с которыми электроны взаимодействуют. Любая химическая реакция - это изменение состояния электронных оболочек.

Почему не участвуют ядра? Потому что ядра несравненно тяжелее электронов. Солнце ведь тоже почти не отреагирует на приближение или удаление Земли - оно слишком тяжелое, чтобы сколь-нибудь заметно дергаться из-за такой мелочи. Вот и атомные ядра не обращают особого внимания на происходящее с их электронами

Сами ядра тоже не разваливаются на части по поводу электрического поля электронов. Внутренние силы, удерживающие кварки в ядре несравненно мощнее, чем электрические поля в атоме.

По этой причине квантовая механика решает задачу о повелении электронов в поле ядер, но не интересуется поведением ядер в поле электронов - это настолько малая поправка, что ее и измерить-то не получится. Соответственно, вся химия - это поведение электронных оболочек в полях одного или нескольких ядер. А когда речь заходит о поведении самого ядра, то становится уже не до химии.

Потенциальная и кинетическая энергия позволяют охарактеризовать состояние любого тела. Если первая применяется в системах взаимодействующих объектов, то вторая связана с их движением. Эти виды энергии, как правило, рассматриваются тогда, когда сила, связывающая тела, независима от траектории движения. При этом важны только начальное и конечное их положения.

Общие сведения и понятия

Кинетическая энергия системы является одной из важнейших ее характеристик. Физики выделяют два вида такой энергии в зависимости от вида движения:

Поступательная;

Вращения.

Кинетическая энергия (Е к) представляет собой разность между полной энергией системы и энергией покоя. Исходя из этого, можно сказать, что она обусловлена движением системы. Тело имеет ее только тогда, когда оно движется. В состоянии покоя объекта она равняется нулю. Кинетическая энергия любых тел зависит исключительно от скорости движения и их масс. Полная энергия системы находится в прямой зависимости от скорости ее объектов и расстояния между ними.

Основные формулы

В том случае, когда любая сила (F) действует на тело, находящееся в покое так, что оно приходит в движение, можно говорить о совершении работы dA. При этом величина этой энергии dE будет тем выше, чем больше совершается работы. В этом случае верно такое равенство: dA = dE.

С учетом пути, пройденного телом (dR) и его скорости (dU), можно воспользоваться 2 законом Ньютона, исходя из которого: F = (dU/dE)*m.

Вышеуказанный закон используется только тогда, когда имеется инерциальная система отсчета. Существует еще один важный нюанс, учитываемый при расчетах. На значение энергии влияет выбор системы. Так, согласно системе СИ, она измеряется в джоулях (Дж). Кинетическая энергия тела характеризуется массой m, а также скоростью перемещения υ. В этом случае она составит: E k = ((υ*υ)*m)/2.

Исходя из вышеуказанной формулы, можно сделать вывод, что кинетическую энергию определяют массой и скоростью. Иными словами, она представляет собой функцию движения тела.

Энергия в механической системе

Кинетическая энергия представляет собой энергию механической системы. Она зависит от скорости движения ее точек. Данная энергия любой материальной точки представляется такой формулой: E = 1/2mυ 2, где m - масса точки, а υ - ее скорость.

Кинетическая энергия механической системы являет собой арифметическую сумму таких же энергий всех ее точек. Ее также можно выразить следующей формулой: E k = 1/2Mυ c2 + Ec, где υc — скорость центра масс, М - масса системы, Ec - кинетическая энергия системы при движении вокруг центра масс.

Энергия твердого тела

Кинетическая энергия тела, которое движется поступательно, определяется как и такая же энергия точки с массой, равной массе всего тела. Для расчета показателей при перемещении применяются более сложные формулы. Изменение этой энергии системы в момент ее перемещения из одного положения в другое происходит под воздействием приложенных внутренних и внешних сил. Оно равняется сумме работ Aue и A"u данных сил при этом перемещении: E2 - E1 = ∑u Aue + ∑u A"u.

Данное равенство отражает теорему, касающуюся изменения кинетической энергии. С ее помощью решаются самые разные задачи механики. Без этой формулы невозможно решить целый ряд важнейших задач.

Кинетическая энергия при высоких скоростях

Если скорости тела близки к скорости света, кинетическую энергию материальной точки можно рассчитать по следующей формуле:

E = m0c2/√1-υ2/c2 - m0c2,

где с - скорость света в вакууме, m0 - масса точки, m0с2 - энергия точки. При маленькой скорости (υ

Энергия при вращении системы

Во время вращения тела вокруг оси каждый его элементарный объем массой (mi) описывает окружность радиусом ri. В этот момент объем имеет линейную скорость υi. Поскольку рассматривается твердое тело, угловая скорость вращения всех объемов будет одинакова: ω = υ1/r1 = υ2/r2 = … = υn/rn (1).

Кинетическая энергия вращения твердого тела представляет собой сумму всех таких же энергий его элементарных объемов: E = m1υ1 2/2 + miυi 2/2 + … + mnυn 2/2 (2).

При использовании выражения (1), получаем формулу: E = Jz ω 2/2, где Jz - это момент инерции тела вокруг оси Z.

При сравнении всех формул становится ясно, что момент инерции - это и есть мера инертности тела во время вращательного движения. Формула (2) подходит для объектов, вращающихся относительно неподвижной оси.

Плоское движение тела

Кинетическая энергия тела, движущегося вниз по плоскости, складывается из энергии вращения и поступательного движения: E = mυc2/2 + Jz ω 2/2, где m - масса движущегося тела, Jz - момент инерции тела вокруг оси, υc - скорость центра масс, ω - угловая скорость.

Изменение энергии в механической системе

Изменение значения кинетической энергии тесно связано с потенциальной. Суть этого явления можно понять благодаря закону сохранения энергии в системе. Сумма E + dP во время перемещения тела всегда будет одинаковой. Изменение значения E всегда происходит одновременно с изменением dP. Таким образом, они преобразуются, словно перетекая друг в друга. Такое явление можно встретить практически во всех механических системах.

Взаимосвязь энергий

Потенциальная и кинетическая энергии тесно связаны между собой. Их сумму можно представить как полную энергию системы. На молекулярном уровне - это внутренняя энергия тела. Она присутствует постоянно, пока существует хотя бы какое-то взаимодействие между телами и тепловое движение.

Выбор системы отсчета

Для проведения вычисления значения энергии выбирают произвольный момент (его считают начальным) и систему отсчета. Определить точную величину потенциальной энергии возможно только в зоне воздействия сил, которые не зависят от траектории движения тела при совершении работы. В физике данные силы называют консервативными. Они имеют постоянную связь с законом сохранения энергии.

Суть разницы между потенциальной и кинетической энергией

Если внешнее воздействие минимально или сводится к нулю, изучаемая система всегда будет тяготеть к состоянию, в котором ее потенциальная энергия также будет стремиться к нулю. Например, подброшенный вверх мячик достигнет предела этой энергии в верхней точке траектории движения и в тот же момент начнет падать вниз. В это время накопленная в полете энергия преобразуется в движение (выполняемую работу). Для потенциальной энергии в любом случае существует взаимодействие как минимум двух тел (в примере с мячиком гравитация планеты оказывает на него влияние). Кинетическую энергию можно рассчитать индивидуально для любого движущегося тела.

Взаимосвязь разных энергий

Потенциальная и кинетическая энергия изменяются исключительно при взаимодействии тел, когда действующая на тела сила совершает работу, значение которой отлично от нуля. В замкнутой системе работа силы тяготения или упругости равняется изменению потенциальной энергии объектов со знаком «-»: A = - (Ep2 - Ep1).

Работа силы тяготения или упругости равняется изменению энергии: A = Ek2 - Ek1.

Из сравнения обоих равенств ясно, что изменение энергии объектов в замкнутой системе равняется изменению потенциальной энергии и противоположно ему по знаку: Ek2 - Ek1 = - (Ep2 - Ep1), или иначе: Ek1 + Ep1 = Ek2 + Ep2.

Из указанного равенства видно, что сумма этих двух энергий тел в замкнутой механической системе и взаимодействующих силами упругости и тяготения, всегда остается постоянной. Исходя из вышеизложенного, можно сделать вывод о том, что в процессе изучения механической системы следует рассматривать взаимодействие потенциальной и кинетической энергий.

Слово «энергия» в переводе с греческого означает «действие». Энергичным мы называем человека, который активно двигается, производя при этом множество разнообразных действий.

Энергия в физике

И если в жизни энергию человека мы можем оценивать в основном по последствиям его деятельности, то в физике энергию можно измерять и изучать множеством различных способов. Ваш бодрый друг или сосед, скорее всего, откажется повторить тридцать-пятьдесят раз одно и то же действие, когда вдруг вам взбредет на ум исследовать феномен его энергичности.

А вот в физике вы можете повторять почти любые опыты сколь угодно много раз, производя необходимые вам исследования. Так и с изучением энергии. Ученые-исследователи изучили и обозначили множество видов энергии в физике. Это электрическая, магнитная, атомная энергия и так далее. Но сейчас мы поговорим о механической энергии. А конкретнее о кинетической и потенциальной энергии.

Кинетическая и потенциальная энергия

В механике изучают движение и взаимодействие тел друг с другом. Поэтому принято различать два вида механической энергии: энергию, обусловленную движением тел, или кинетическую энергию, и энергию, обусловленную взаимодействием тел, или потенциальную энергию.

В физике существует общее правило, связывающее энергию и работу. Чтобы найти энергию тела, надо найти работу, которая необходима для перевода тела в данное состояние из нулевого, то есть такого, при котором его энергия равна нулю.

Потенциальная энергия

В физике потенциальной энергией называют энергию, которая определяется взаимным положением взаимодействующих тел или частей одного и того же тела. То есть, если тело поднято над землей, то оно обладает возможностью падая, произвести какую-либо работу.

И возможная величина этой работы будет равна потенциальной энергии тела на высоте h. Для потенциальной энергии формула определяется по следующей схеме:

A=Fs=Fт*h=mgh, или Eп=mgh,

где Eп потенциальная энергия тела,
m масса тела,
h - высота тела над поверхностью земли,
g ускорение свободного падения.

Причем за нулевое положение тела может быть принято любое удобное нам положение в зависимости от условий проводимых опыта и измерений, не только поверхность Земли. Это может быть поверхность пола, стола и так далее.

Кинетическая энергия

В случае, когда тело движется под влиянием силы, оно уже не только может, но и совершает какую-то работу. В физике кинетической энергией называется энергия, которой обладает тело вследствие своего движения. Тело, двигаясь, расходует свою энергию и совершает работу. Для кинетической энергии формула рассчитывается следующей образом:

A = Fs = mas = m * v / t * vt / 2 = (mv^2) / 2 , или Eк= (mv^2) / 2 ,

где Eк кинетическая энергия тела,
m масса тела,
v скорость тела.

Из формулы видно, что чем больше масса и скорость тела, тем выше его кинетическая энергия.

Каждое тело обладает либо кинетической, либо потенциальной энергией, либо и той, и другой сразу, как, например, летящий самолет.



gastroguru © 2017